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Scale-covariant field theories: XI. The pseudo-perturbation 
expansion 

J M Ebbutt and R J Rivers 
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, England 

Received 22 February 1982 

Abstract. We examine the possibility of developing a perturbation expansion about the 
pseudo-free scalar theory. The degeneracy of the subtracted scale-covariant equations 
requires that additional information be provided. We suggest two ways in which this can 
be done. 

1. Introduction 

A definition of non-renormalisability that is independent of computational procedure 
has been proposed by Klauder (1979b, and references therein). The basic idea is that 
of discontinuous perturbations, a common occurrence in quantum mechanics (Klauder 
1973, 1979b). 

A theory with coupling strength A 2 0 is perturbatiuely discontinuous if, on taking 
A + O’, the resulting theory is different from the free theory for which A = 0 identically. 
When this happens the theory given by the A +O+ limit is called the pseudo-free 
theory. It is assumed that, when A is non-zero, a perturbation series in A can be 
developed about the pseudo-free theory?. 

This has been disputed by Nouri-Moghadam and Yoshimura (1978), who have 
argued that the branching equations for Green functions in such theories (the analogue 
of the Schwinger-Dyson equations) do not permit the development of such a ‘pseudo- 
perturbation’ expansion. 

The purpose of this paper is to re-appraise the arguments of Nouri-Moghadam 
and Yoshimura (1978) on this and related topics. 

As a first step we must recapitulate some aspects of discontinuously perturbative 
theories. More details are given in the preceding paper of this series (Ebbutt and 
Rivers 1982a, to be referred to as I). 

It has been argued (Klauder 1979a, b, 1981a, b) that discontinuously perturbative 
theories are accommodated in the path integral formalism by preparing the measure 
to be scale covariant. That is, a single scalar field cp with Acp4 interaction has generating 
functional (in d Euclidean space-time dimensions) 

Z ’ [ h ]  = I g’[cp] exp - dx(-ihcp + ~ ( V V ) ~  + $m$p2 + Aocp4) I (1.1) 

i It is attempts to develop perturbation series in A about the free theory that give rise to the conventional 
difficulties of non-renormalisable theories. 
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(dx = ddx) where 

W b I =  F[AlWcpl  A(x) > 0, Vx (1.2) 

is a scale-covariant measure whose normalisation is chosen so that Z’[O]= 1. This 
contrasts to the translationally invariant measures of canonical renormalisable theories. 

On switching off the interaction in (1.1) we recover the pseudo-free theory. 
Inevitably, formal path integrals like the above cannot be evaluated directly. 

Rather in the first instance, we attempt to solve the Green function branching 
equations that follow from 

where Kx = -Vx + m i ,  satisfied by (1.1). 
The : : denotes the subtraction procedure 

S P  Z’[h]--Z’[h]l  S P  Z’[h] .  
‘ 6h (x)‘ Sh (x) ’  Sh (x ) ’  h = O  

: Z’[h]  = - S P  .- 

(1.3) 

(1.4) 

The presence of subtraction in (1.3) follows from the form of (1.2) and is reinforced 
by the exact results of the independent-value model (IVM) in which K is replaced by 
m: (Klauder 1975, 1979a). 

As a further indication of the need to be extremely cautious in handling path 
integrals like ( l . l ) t ,  it can be seen (Klauder 1979b) that the definition of operator 
products implied by the scale-invariant measure 9’[(p] implies formally linear branch- 
ing equations for the connected Green functions 

i”Wn(x1x2., . x n ) =  6”  InZ’[h]l . 
6h (x 1) * * . Sh (x,) h = O  

(1.5) 

These are 

( y  ~ i x - x r ) )  w Z m ( X 1 X 2 .  . xzm)-ljm x ‘X ~ x ~ 2 m + 2 ( X f  X I ,  X 1 . a  X Z m )  
r = l  

-4Ao W 2 m + 4 ( ~ ~ ~ ~ ~ 1  . . . ~ 2 ~ )  = 0 m a l  (1.6) 

assuming all W2m+l to be identically zero. 
Equations (1.6) have, so far (Klauder 1979a, b), been considered the essential 

content of the formal expression (1.1). Unfortunately, with the exception of the IVM, 
and an ingenious solution when mo = A. = 0 (Klauder 1979b), they have proved very 
resistant to solution. 

In an analysis of (1.6) Nouri-Moghadam and Yoshimura (1978) have argued that 
(i) the equations are extremely degenerate; (ii) in particular, they do not permit a 
perturbation series expansion in Ao,  negating the whole approach of discontinuous 
perturbations. 

To understand the accuracy of these objections, we shall firstly contrast them (in 
0 2) to the Schwinger-Dyson (SD) equations of the canonical theory. 

Secondly, on the assumption that a large part of the problem is purely combinatoric 
we can examine this aspect in detail for the IVM, contrasting this to the translation- 
covariant static ultra-local model (SULM) proposed by Caianiello and Scarpetta 

+These cautions are to deter the reader from naively expanding (1.1) as a power series in A0 
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(1974a, b). This is the content of Q Q  3 and 4. In particular we are interested in 
understanding the loss of information between asking for exact solutions and asking 
only for perturbation series. 

Thirdly (§ 5 )  we examine the need to supplement the branching equations with 
renormalisation-group-type equations to extract as much information as possible from 
the formal path integrals. 

Finally, we consider the alternative augmented formalism (Klauder 1977) for a 
theory with scale-invariant measure. As indicated in (Klauder 1981a, b), for non- 
canonical quantisation it is sufficient that the new measure be scale covariant, as in 
(1.2). However, the IVM that we have already mentioned (Klauder 1975, 1979b) has 
a scale-invariant measure 

W b I  = %PI A(x) > 0, Vx (1.7) 

and it is likely that such measures will be particularly important, deserving special 
study. The augmented formalism proposed by Klauder (1977) for a scale-inuariant 
measure is to re-express Z'[h]  of (1.1) as 

Z'[h, i] = 9[q]9?[x] exp -I dx(-ihp - ijx + :(Vqj2 + 4m$p2 + A 0 q 4  + :vo(p2x2j 
(1.8) 

where qo is an arbitrary constant, and 9 [ q ] ,  9 [ x ]  are canonical translation-invariant 
measures normalised so that Z'[O, 01 = 1. 

A further claim of Nouri-Moghadam and Yoshimura (1978) is that (iii) the 
augmented formalism contains no more information than the scale-covariant formalism 
(l.l), even though it enables us to obtain point-split variants of the equations (1.6). 
We examine this claim in Q 6. 

We stress that this paper is concerned with the relatively limited exercise of 
identifying those Green functions, or parts of Green functions, that are not constrained 
by the theory. As well as considering the problems mentioned above, Nouri- 
Moghadam and Yoshimura (1978) attempted the much more complicated problem 
of determining the Green functions in terms of the unconstrained components. We 
have nothing to say about this problem. 

2. Discussion 

Before examining the subtracted scale-covariant branching equations (1.6), let us 
recapitulate the main results of the translation-covariant Schwinger-Dyson equations 
that follow from the generating functional 

This 2 satisfies the formal functional differential equation 

s 4ho- }Z[h]  s3 = 0. 
h (x ) - K,  - - 

6 h ( x )  Sh(x)3  

The branching equations for the unconnected Green functions 

(2.1) 
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( 2 . 4 ~ )  

(2.46) 

r = l  

- ~ A O G Z ~ + ~ ( X X X X I  . . X Z ~ + I )  = 0 m > 1.  ( 2 . 4 ~ )  

These equations are surprisingly degenerate, in that they permit G2(x1xZ) to be 
arbitrarily specified. However, it is well known that the Schwinger-Dyson equations 
embody the unambiguous Feynman diagram expansion. 

To see how this happens we express each unconnected Green function G, as a 
power series in A 0  

G, = 1 Gf’A;. (2.5) 
It then follows that (i) because of the inhomogeneous S function in ( 2 . 4 ~ )  all the G‘,O’, 
n 2 2  are uniquely determined; (ii) if we express the relationship between the G”’ 
and the G!p+l) formally as 

(2.6) 
the operator L is uniquely invertible. 

The seeming paradox that the perturbation series for G2 obtained frcm (2.4) is 
unique (order by order), whereas GZ itself is arbitrary in (2.4), is reso1vc:d ir, two ways. 
Firstly, the requirement that the perturbation series exists (i.e. that for non-exceptional 
coordinates the regularised GZn satisfy limA,,o 1G2,1 <a) can be interpreted as a 
boundary condition. Secondly, the perturbation series in A. is asymptotic, and hence 
does not determine GZ uniquely unless additional information is given beyond that 
expressed in the branching equation (2.4). 

This means that if we are only interested in developing the Ao-perturbation series 
for the Green functions G2,, we can trade the boundary condition implicit in perturba- 
tion expansions and the ambiguity in resummation for the boundary condition G2. 

What is the situation for the scale-covariant equations (1.6), which we write out 
in greater detail as 

LG(Pl-1) = G(P) 

[ 6 ( X  - X 1 ) + 6 ( X  - X Z ) ] W Z ( X I X ~ ) - ~ / ~  KxWq(XX’X1Xz) -4AoW6(XXXXX1X2)=o (2 .7a)  
x - x  

[ S ( x  -x1)+S(x - x z ) + S ( x  - x 3 ) + S ( x  -x4)]W4(x1x2x3x4) 

- lim K, W ~ ( X X ’ X I X ~ X ~ X ~ )  - 4Ao Wg(xxxxx1x~x3x4) = 0 (2.7b) 
x’-x 

( y  ~ ( x  - x r ) )  Wzm(xl . . . x Z m ) -  lim ~ , ~ ~ , , , + 2 ( x x ’ x ~  . . . x Z m )  
r = l  x - x ’  

- ~ A O W : ! , , , + ~ ( X X X X X ~ .  . . x z m ) = O  m > 2 .  ( 2 . 7 ~ )  

A diagrammatic representation of these equations is given in I. 
The most noticeable properties of these equations are that ( a )  there is no 

inhomogeneous term to set a scale for the W2m; (6) the first equation contains 
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W2, W4, W6. Although WO = 0 is a necessary boundary condition, no equation contains 
WO because of the subtraction procedure (1.5). 

The immediate observation made by Nouri-Moghadam and Yoshimura (1978) is 
that equations (2.7) are so degenerate that both W2 and W4 can be, and need to be, 
independently specified before WzP ( p  > 2) can be calculated. They are therefore more 
degenerate than the Schwinger-Dyson equations (2.4). 

However, we have seen that this latter degeneracy is not present in the A- 
perturbation series for the SD equations. If we are only interested in A-perturbation 
series, to what extent can we trade the implicit boundary conditions and the ambiguity 
of resummation for knowledge of Wz and W4 in this case? 

We expand W2,, as the pseudo-perturbation series 

The zeroth-order equations are 

[ ~ ( x  - x l ) + s ( x  -x2)]~:O'(xlxz)-lim K ~ W ~ ~ ' ( X X ' X ~ X ~ )  = O  

[S(x - X I )  + S(x -xZ) + S(x -x3) + S(x -x4)]wio) (xlxZX3x4) 

- lim K, WLO) (xfxx1x2x3x4) = o 

x -x 

( 2 . 9 ~ )  

x ' X  

etc. We see that these equations cannot permit the absolute determination of the 
Wi?, but once Wio) is given, the remaining W:",' are not arbitrary. 

However, any hopes that the W:p,' are determined once Wi0) is given are not 
sustained on examining the non-leading equations 

[ ~ ( x  - x l ) + s ( x  -xz)]~:P+"(x1xZ)-lim K ~ W ~ P + ~ ) ( X X ' X ~ X ~ )  

[S(x - X I )  + S(x -xz) + S(x -xg) + S(x -x4)] WkPC1) (XlXZX3X4) 

x ' - x  

= 4 wk"' (xxxxx1xz) p 2 0  (2.10a) 

- lim K, w?+') ( ~ ~ ' ~ 1 x 2 ~ 3 ~ 4 )  
x -x 

= 4 w p  (xxxxx1x2x3x4) (2.106) 
2m 

r = l  

[ s(X -xi)] w:P:1)(x1xz. . . x2m)-1im ~ x ~ 2 m + 2  ( P + l )  (xxfx i . .  X2m) 
x -x 

= 4 WZm+4(XXXXX1 . . . XZm). (2.10c) 

As was observed in I, knowledge of Wi0) (and hence W 2 )  does not obviously 
enable us to determine Wiz  and hence higher-order terms. That is, writing (2.10) 
symbolically as 

LW(P+l) = W'P' (2.11) 

L is not uniquely invertible in this case. Moreover, unlike the SD equations, it is 
difficult to see exactly what we gain in trade for the ambiguity of resummation and 
implicit boundary conditions in just requiring the pseudo-perturbation series. 

Let us therefore try to distinguish the combinatoric problems (i.e. which W can 
be specified independently) from the 'ascending problems' of actually determining the 
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dependent W from the independent onesf. These latter problems require interpreta- 
tion of the singularities of the W at coincident points (i.e. the 'renormalisation' 
prescription). 

To understand the combinatoric problem it is sufficient to consider simplified 
versions of the canonical and scale covariant theories in which the kinetic term K, is 
replaced by mi in (2.4) and (2.7). This guarantees that the distributions Wzm, Gzm 
are only products of S functions and makes the 'ascending' problems trivially solvable. 

In the next section we shall see what this means for the canonical theory. 

3. The static ultra-local model 

Let us examine what happens when we drop the kinetic term in the canonical theory 
of (2.4). The functional differential equation satisfied by the unconnected Green 
function generating functional &[h] becomes, on replacing K, by mi  in (2.21, 

For the static ultra-local model (SULM) (Klauder 1975) to be non-trivial it must 
be regularised, either by putting it c.n a lattice, lattice size M-' or by demanding that 
S(0) = M d  (in d dimensions). The factor Mcannot be eliminated from the theory. 

Given this regularisation, the general solution to (3.1) is seen to be 

ddx M d  In to(h (x)) (3.2) 

where the function zo(h) for constant argument h satisfies the differential equation 

in which 

m2= m&-d A = /\OM-". 

The connected Green functions 

8" 
Sh(x1). . . Sh(xn) h =O 

in W, (xl . . . x,) = In Zo[h 11 

are obtained from 2 0  in the following way. 
If w, is defined by 

d" 
inw, = 7 In zo(h)  

dh 

it follows that 

(3.3) 

(3.4) 

(3.5) 

f This can be a serious problem even for the canonical theory (Yoshimura 1979). 
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To establish a correspondence with the previous section we examine the linear 
relationships satisfied by the rfl, defined by 

inT, =-ro(h)l  d" . 
dh" h =O 

(3.8) 

Knowing the T,, we can construct the w,, hence the W,, and finally the G, for the model. 
We assume that the rZp+' are zero for all non-negative integer p. If T is the column 

vector with pth element 

(TIP = 7 2 p  

the recurrence relations are most usefully expressed as the matrix equation 

(-m211+L-4AD)7 = -el 

where L is the lower semi-matrix 

Lij = (2 j  + l)&j+' 

D the upper semi-matrix 

D..=S.  . 
tl t + L l  

and e l  the column matrix 

(e& = 8 1 , ~  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

The matrix (-m211 +L -4AD) does not have a unique right-hand reciprocal (-m20 + 
L - 4AD)-' satisfying 

(-m2n +L -4~D)(-m'n +L -  AD)-^= 1 (3.14) 

because of the presence of the upper semi-matrix. Thus, equation (3.10) cannot be 
solved uniquely, permitting a family of solutions labelled by T ~ .  

However, since (-mzl+L) is a lower semi-matrix it does have a unique right-hand 
reciprocal ( -m21+L)-' .  Thus (3.10) can be uniquely re-expressed as 

= -(--m2n+L)-'el +4h(-m2n +L)-'DT. (3.15) 

If we expand T as a power series in A as 

(3.16) 

we therefore have a unique perturbation series solution? 

T ( ~ + l )  = 4 ( - m 2 n + ~ ) - 1 ~ T ( ~ )  (3.17) 

(3.18) 

This example demonstrates very simply how degenerate equations permitting 
arbitrary T~ = w2 and hence GZ have unique perturbation series expansions. 

t This corresponds to expressing (-m211+L-4AD)-' as [D-4h(-mZ11+L)-'D]- ' ( -m2~+~)-'  = 
[Z,,, [4A(-m2a+L)-'D]'(-m2n+L)-' which can be seen nor to converge for any A # 0. 



2936 J M Ebbutt and R J Rivers 

It is informative to see how we would have reached the same conclusion directly 
from equation (3.3). Imposing the two boundary conditions 

(9 zo(0) = 1 ( 3 . 1 9 ~ )  

(ii) zo(h)  = zo(-h) (3 .196)  

zo has the form 

where 
W 

Z ( m 2 ,  A, h ) =  du exp(ihu -&n2u2-Au4)  I, 

(3.20) 

(3.21) 

and y (m2 ,  A )  is an arbitrary function of m2,  A.  
As before, all Green functions are fixed once 72 (or equivalently G2) is specified. 

Each choice of r2 corresponds to a choice of y ( m 2 ,  A ) .  
From (3.20) we see that, in an obvious notation, 

where 

( 3 . 2 3 )  

The V(a, x )  are the usual parabolic cylinder functions. 
For small h 

a i P / a  lp = O(A -’ exp(m4/16A)). (3.24) 

If we now restrict ourselves merely to considering the perturbation series for T ~ ~ ,  

we require that 

This can only be satisfied if 

y = o  

or 

y = O(exp(-amJ/16A)i a > 1. 

(3.26) 

( 3 . 2 7 )  

This is equivalent to requiring that ya2, has zero asymptotic series. 
This is, the condition (3 .25)  that the perturbation series exists guarantees that it 

is unique (but not uniquely summable) as we had already seen in the recurrence 
relations. 
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4. The independent-value model 

We now drop the kinetic term in the scale-covariant theory of (1.3). The functional 
differential equation for the generating functional Z &  [h] becomes 

+mo:-*- 2 s2 4Ao:-:)Z&[h]=0. S4 
Sh (x)? * Sh ( x ) ~  (4.1) 

The general solution to this independent-value model (IVM) is of the form (Klauder 
1979b) 

Z&[h]=exp dx W(h(x)) (4.2) I 
where WO satisfies the linear subtracted equation 

(4.4) 
In d space-time dimensions, we introduce renormalised mass m and coupling constant 
A by 

where 6, of dimension (ma&, plays a role analogous to M d  in equation (3.4). 
bm2 = f i2  b3A =i (4.5) 

The connected Green functions 

6" 
In Z&[hll h i 0  Sh(x1). . Sh(x,) 

in Wl, (xl , . . x,) = 

are obtained from Wo(h) as 

where 

d" 
i n W '  =---w' . " dh" h = O  

(4.6) 

(4.8) 

As in the previous section we first examine the branching equations implied by 
(4.3). If (taking w;,+l = 0, all non-negative integer p) w' is the column-vector 

( 4 p  = w;, p a l  (4.9) 
the branching equations have the matrix form 

(2A - fi2D -4XD2)w'=0 (4.10) 

where A is the diagonal matrix 

A . .  =is.. 
11 11 

and D is given in (3.12). 

(4.11) 
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By definition, the homogeneous equation (4.10) cannot have a unique solution. 
Let us therefore separate off w i ,  to rewrite (4.10) as 

(-fi21+L’-41D)rt = -2w;el (4.12) 

where G is the column vector 

G = D w ’  (GIP = Wb+Z (4.13) 

and L‘ is the lower semi-matrix 

L;j = 2( j  + l )&,j+l .  (4.14) 

Equation (4.14) can be compared directly with (3.10). As in that case, the matrix 
(-A21 +L’+ 4 x 0 )  does not have a unique right-hand reciprocal. In consequence, 
(4.12) cannot be uniquely solved for G once wh is given, permitting a family of 
solutions labelled by w ;  (in addition to w;). 

However, since ( - f i21+L’ )  does have a unique right-hand reciprocal we can write 
(4.12) uniquely as 

E = - 2 w ; ( - f i 2 1 + L ’ ) - ’ e l  +4h(-fi2U+L’)-’Dw. (4.15) 

If we expand w ;-’ E as a power series in h as 

(4.16) 

( 4 . 1 7 ~ )  

with 

- 2 ( f i 2 0 + ~ ’ ) e l .  (4.176) 

That is, once the perturbation series for w2 is given, all other perturbation series 

To see how we would have obtained this result directly from (4.3) we impose the 
are uniquely determined. 

three boundary conditions 

(4.18) 

implying wo = w 1  = w3 = O t .  This gives -Wo(h) to have the form 

-WO(h) = a ( f i 2 ,  h ) w ‘ ( f i * ,  1, h ) + c ( f i 2 ,  h ) w ’ ( - f i 2 ,  h, ih) (4.19) 

where 

du 1 - 2  2 w ’ ( f i 2 ,  1, h )  = 5 -(1 -cos u h )  exp -(sm u +Xu4). 
--ic 1u1 

(4.20) 

The specification of the arbitrary functions a (e2, h), c ( f i z ,  1) is equivalent to indepen- 
dently specifying w ;  and wk. 

Writing w ; ,  in an obvious notation as 

W h P  = aw;,  +cw, (4.21) 

t The solutions to (4.3) need fiue boundary conditions to be uniquely determined. 
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we have 

w i p / w i p  = O(IpP exp(rii4/161)) (4.22) 

On restricting ourselves just to the perturbation series we require that, in order 
as in (3.24). 

that it exists, 

(4.23) 

This forces cw, to have zero asymptotic series for all p .  On assuming this, we see 
that the asymptotic series in I for wzpwY1 (independent of a )  are now uniquely 
determined even though they are not uniquely summable to wZpwY1. 

5. Renormalisation group equations 

Our analysis so far has shown the extent to which the scale-covariant equations (4.1) 
carry less information than the translation-covariant equations (3.1). 

However, this difference in information is not a true reflection of our lack of 
knowledge about the solutions to the respective models. For example, a lattice 
calculation for the SULM shows (Kainz 1975) that it is completely determined, rather 
than just its perturbation series. Similarly, a Fock space calculation for the IVM 

(Klauder 1975) shows that is is completely determined up to a single overall scale 
parameter. 

The additional information that we have not yet used comprises the branching 
equations of the ‘second kind’ (in the terminology of Caianiello and Scarpetta 
1974a, b). For both the SULM and the IVM they are 

(where Z denotes Z0 or Zb) reflecting the change in 2 as m i  and A. are changed. 
These equations follow from the Schwinger action principle and are automatically 
satisfied by the formal path integrals. They have been examined for the two models 
in question in a different context (Marinaro 1976) and we shall be brief. 

It is sufficient for our purpose to see the constraints they impose on zo (h )  and -Wo(h). 
Let us first consider the SULM. Equations (5.1) become 

and 

a a4 a4 
--zo(h)=-z (h)---z (h ) l  zO(h) .  
ah ah4 O ah4 h = O  

(5.33 
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such that (5.3) and (5.4) become 

and 

a a4 
ah ah 
-E(h)  = a E ( h ) .  

If the derivatives of E are defined by 

a" 
i"7, = ---E(h) 1 

ah" h = O  

it follows that 

7" = 7,/ 70. 

Equations (5.6) and (5.7) then imply 

p 3 0 .  

(5.7) 

(5.10) 

(5.11) 

In the notation of (3.22) 

f z p  = a i p  + yaZp. (5.12) 

Since a ip  individually satisfy both (5.10) and (5.11), as follows directly from (3.21), 
these equations become 

ay -=-= 
a(lm2) aA 

with solution 

y = constant. 

(5.13) 

(5.14) 

That is, whereas the SD branching equations gave a family of solutions depending 
on the arbitraryfunction T2(m2, A ) ,  the further imposition of (5.1) and (5.2) produces 
a family of solutions depending on a single parameter y. 

Furthermore, if we now require from (3.25) that the perturbation series exists, 
only the solution y = 0 of (3.26) is tenable. That is, the perturbation series is both 
unique and uniquely resummablet. 

This is difficult to see in the matrix formulation. If 

(5.15) 

t We do not expect this to be true for the full canonical theory after renormalisation has been implemented 
(because of the possibility of renormalons (Lautrup 1977, Parisi 19781, for example). 
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equations (3.10), (5.1) and (5.2) become 

(-m211+L-4AD)? = -elfo (5.16) 

(5.17) 

(5.18) -q-’=-D a 2 7’. 

ah 

The intersection of (5.17) and (5.18) with the non-uniquely solvable (5.16) is obscure?. 
Let us now consider the IVM of the previous section for which equations (5.1) and 

(5.2) become 

a a2 
a($r?l 2, ah2 

Wo(h) = -- WrJ(h) 

and 

(5.19) 

(5.20) 

Imposing these conditions on the exact solution (4.19) we see from (4.20) that 
w f ( f i 2 ,  x, h )  and w ’ ( - f i 2 ,  1, ih )  individually satisfy (5.19) and (5.20). 

Equations (5.19) and (5.20) therefore imply 

ac -- _-- aa 
a($*’) a ( h f i 2 )  - O 

and 

That is, both a and c are constant. 

(5.21) 

Again, the imposition of (5.1) and (5.2) reuces *WO from a family of solutions 

If we now impose (4.23), so lhat the perturbation series exists, we see from (4.22) 
dependent on two functions to a family dependent on two constant parameters. 

that we must have c = 0 to give 

(5.22) 

That is, whereas the imposition of (5.1) and (5.2) gives no further information on 
the form of the A-perturbation series for the ULM, this is not the case for the IVM, by 
virtue of the restrictions on a. Up to this constant scale factor the asymptotic series 
in A, and its resummation, is unique $. 

In terms of the matrix equations, equations (4.12), (5.19) and (5.20) become 

(-r?120+Lf-41D)llr = -2w5el (5.23) 

(5.24) 

t We note from the above that the perturbation series (3.16)-(3.18) automatically satisfies (5.1) and (5.2). 
$ We would again expect this unique resummability to be an artifice of the restricted model, and not shared 
by the full theory. 
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4. Results and discussion 

4.1. Colloidal liquids 

Most of the experimental data on the colloidal liquids has been published in earlier 
papers (Griiner and Lehmann 1979,1980a). The purpose of this section is to review 
the data according to the theory’ in § 2 and to make a direct comparison with the data 
on colloidal crystals possible. 

All measured intensity correlation functions were corrected for multiple scattering 
(Griiner and Lehmann 1980b), and it turned out that two exponentials were always 
sufficient to provide an excellent fit to the data. The two-exponential form of the 
functions is an experimental justification for the visoelastic approximation made in 
§ 2. The results for one particular concentration are shown in figure 2 together with 
the static structure factor S(k) from static light scattering measurements. It can be 
seen that the long-time decay constant goes towards the short-time decay for small 
k vectors. 

Since the samples are rather monodisperse, they do not show the incoherent 
self-diffusion term (Pusey 1980, Weisman 1980) present in previous experiments by 
Pusey (1978) and Dalberg etal(l978). From the data of the fit we are able to extract 
the memory function, which is, apart from numerical constants, the internal longi- 
tudinal viscosity. From equations (8), ( 6 )  and ( 5 )  it follows in the limit of w + O  that 

rl + rz - rc - rM [C(k, w = 0)  +$q(k, w = O)]  = A.&&, w = 0 )  = - k2 
mows r M  

rc is the first cumulant given by equation (9) and r M  is the decay constant of the 
memory function (equation (3)), which is given by the equation 

r M  = rlr2/rc. (18) 

With equation (17) we have defined a reduced, dimensionless quantity In our 
earlier papers (Griiner and Lehmann 1979, 1980a) we have analysed our data in 
terms of a memory function formalism based on the Smoluchowsky equation. The 
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and (5.2) gives 
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= -{ S (0) - mi G2 (XX ) - 4A oG4 (XXXX )}Zo[ h 1. (5.29) 

By virtue of ( 2 . 4 ~ )  we know that (5.29) is satisfied by each side being identically 
zero. However, the left-hand side of (5.29) vanishes just on grounds of engineering 
dimensions. In consequence, the equation 

S(0) - ~ ~ G ~ ( X X ) - ~ A ~ G ~ ( X X X X )  = O  (5.30) 

is, in some sense, a consequence of the renormalisation-group-type branching 
equations of the second kind. 

That is, if instead of equations (2.4) (with K, replaced by mi) we only had equations 
(2.4b) and (2.4c), equation ( 2 . 4 ~ )  could have been reconstructed in the form (5.30). 
Thus, for the ULM we can essentially swap the ‘second kind’ branching equations for 
the dynamical equation (5.30). It is the absence of an equation like ( 2 . 4 ~ )  that causes 
so much difficulty in scale-covariant models. 

Unfortunately, it is seen that a similar situation does not hold for the more relevant 
scale-covariant IVM. However, the IVM does have some peculiarities of its own and 
the comments above suggest that rather than attempt to formulate and impose 
renormalisation-group-type equations on a deficient set of branching equations (2.7), 
we should aim to supplement them with further dynamical equations that have the 
same content. The next section shows how this can be done. 

6. The augmented formalism for scale-invariant measures 

Let us restrict ourselves to the important case of scale-invariant measures. 

to the equations 
Invoking the translation invariance of the measures 9[qp], 9[x] in (1.7) gives rise 

and 

Equation (6.2) is a constraint equation, whereas (6.1) is more dynamical. If the 
unconnected Green functions are defined by 

Sm+nZ’ [h ,  j ]  
im+nGm,n(xl . . . x,; y1 . . . y n )  = (6.3) 6 h ( x 1 ) .  . . S h ( x m ) S j ( y l ) .  . . S j ( y n )  h = j = O  

the branching equations (and their diagrammatic representations) have been given 
in I. 

In Nouri-Moghadam and Yoshimura (1978) it was surprisingly argued that the 
branching equations following from (6.1) and (6.2) were not less degenerate than 
(2.7). This is patently not the case, as can be seen on differentiating (6.1) with respect 
to h ( y ) ,  differentiating (6.2) with respect to j ( y )  and subtracting. 
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This gives 

as a replacement for either (6.1) or (6.2). 
On setting j = 0 and x = y (6.4) becomes 

identical to (1.4) but for the subtraction procedure. 
That is, by using the augmented formalism we seem to gain the additional equation 

lim Kx Wz(xx’) -4Ao W4(xxxx) = 0. (6.6) 
x ‘ X  

We have suggested earlier that an additional equation was just what we needed 
as an alternative to the renormalisation-group-type equations of the second kind. In 
fact, with this equation it is at least plausible that, once Wi0) is specified, all Wg’ 
are constrained, if not determined. This was the hope expressed, but not fulfilled, 
in § 2. 

Should we take (6.6) seriously as new information that may save us from having 
to use renormalisation-group-like equations, or treat i t  as a defect in our presentation 
of the augmented formalism that should be eliminated? We shall treat this problem 
in some detail in the following paper (Ebbutt and Rivers 1982b) in which we argue 
that (6.6) should be accepted as a true formal equation for the full scale-covariant 
theory of (1.1) with scale-invariant measure. 

This, in turn, will indicate the nature of the additional information required to 
supplement the branching equations for the more general case of theories with 
scale-covariant (rather than invariant) measures. 

7. Conclusion 

We have re-appraised the criticisms of the scale-covariant and augmented theories 
made in Nouri-Moghadam and Yoshimura (1978) (comments (i), (ii) and (iii) of the 
introduction). Our work suggests that these criticisms are unduly negative, and more 
positive conclusions can be drawn. 

Firstly, although Klauder’s subtracted scale-covariant branching equations (1.6) 
are very degenerate, we are reminded that the Schwinger-Dyson equations are also 
(although less) degenerate. We know that, if we are only interested in perturbation 
series, this latter degeneracy can be traded for the implicit boundary condition (in 
demanding a perturbative solution) and the ambiguity of resummation?. For Klauder’s 
equations the degeneracy is also reduced but not eliminated, by requiring only the 
existence of a pseudo-perturbation series. 

t Given the difficulties of resummation of canonical renormalisable theories, we consider the establishment 
of a perturbation series as a success in its own right. 
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In order to reduce the degeneracy further we have two options. Firstly, we can 
impose the additional constraint equations that are the analogues of the Callan- 
Symanzik and renormalisation group equations. We do not yet know how to do so, 
but we believe that, when we can, the degeneracy in the scale-covariant pseudo- 
perturbation theory will be no more than an undetermined scale factor. 

Alternatively, we look for an additional dynamical equation that will contain the 
same information as these renormalisation-group-like equations. For the case of 
scale-invariant measures the augmented formalism seems to provide such an additional 
equation by preventing the subtraction procedure of (1.4). This equation will be much 
easier to implement than a renormalisation-group analysis that needs to be constructed 
ab initio. At the level of argument presented here, such depends on the extent to 
which we consider the IVM to be a special case. 

We shall present additional, and very different, arguments for the validity of the 
naive augmented formalism in paper 111. 
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